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SUMMARY

Many investors use optimization to determine their optimal investment portfo-
lio. Unfortunately, optimal portfolios are sensitive to changing input parame-
ters, i.e., they are not robust. Traditional robust optimization approaches aim for
an optimal and robust portfolio which, ideally, is the �nal investment decision.
In practice, however, portfolio optimization supports but seldomly replaces the
investment decision process. In this paper, we present an approach that both
solves the robustness problem and aims to support rather than replace the in-
vestment decision process. The method determines a region with near-optimal
portfolios which, especially in light of the robustness problem, are all good al-
location decisions. Then, as is already common practice, an investor can bring
in expert opinion or additional information to select a preferred near-optimal
portfolio. We will show that the region of near-optimal portfolios is signi�cantly
more robust than the optimal portfolio itself.
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1 Robust optimization
Many investors use portfolio optimization to determine their optimal portfolio. Unfortunately,
optimal portfolios are sensitive to small changes in the optimization’s input parameters. Al-
though most widely studied for mean variance optimization, where optimal portfolios are very
sensitive to the estimated mean and covariance matrix (Frankfurter, Phillips, and Seagle 1971;
Michaud 1989; Chopra and Ziemba 1993), sensitivity is a generic problem in portfolio optimiza-
tion (Kondor, Pafka, and Nagy 2007; Ciliberti, Kondor, and Mézard 2007). As discussed in Hurley
and Brimberg (2015), the sensitivity is caused by an interaction of an estimation error in the
input and the optimization objective.
The literature proposes several robust optimization approaches to deal with the sensitivity
problem. Approaches such as shrinkage (Ledoit and Wolf 2004), robust statistics (Reyna et
al. 2005), Black-Litterman inverse optimization (Bertsimas, Gupta, and Paschalidis 2012) and
Bayesian optimization (Schöttle, Werner, and Zagst 2010) reduce the sensitivity by reducing
variation in the input. Othermethods, such as regularization, change the optimization objective
to make it less sensitive to varying input (DeMiguel et al. 2009; Brodie et al. 2009). Also, there
are hybridmethods that both reduce variation in the input andmake the optimization objective
less sensitive to varying input. For example, the optimization community proposes a general
robust optimization framework with a robust counterpart for convex optimization problems
that lets the input vary within a speci�ed range and selects the worst-case outcome (Ben-Tal
and Nemirovski 1998). Also, there is the resampled frontier (Michaud 1998) which is constructed
by resampling the input from a distribution and averaging over the resamplings’ optimization
results.
Robust optimization approaches work well when all market information is quanti�ed and in-
corporated in the optimization problem. But, despite e�orts to incorporate information such
as transaction costs, expert opinion and liquidity, an optimization problem remains a simpli�-
cation of reality. Therefore, in practice, investors combine the optimal portfolio with additional
information that was not or could not be incorporated. So, for investors, portfolio optimization
is a tool that supports but does not replace their decision process. In this paper, we take this
as the starting point for developing a robust optimization approach.

2 Near-optimal portfolios
Generally, the result of a portfolio optimization problem is an e�cient frontier with optimal
portfolios. Now, given an optimal portfolio on the e�cient frontier, we construct a region of
portfolios just below the e�cient frontier as indicated by the shaded region in Figure 1. As
shown in Chopra (1993) and Section 4, when optimal portfolios are sensitive to the optimiza-
tion’s input parameters, these so-called near-optimal portfolios can have completely di�erent
weights than the optimal portfolio. The idea is that, for the investor, all near-optimal portfolios
have satisfactory risk-return trade-o�s and the investor can, as is already common practice,
bring in additional arguments to select his preferred near-optimal portfolio.
To �nd the shaded region in Figure 1, we construct near-optimal portfolios w0, ... ,wn that are
far away from each other and show that any weighted average of these portfolios, i.e., any
portfolio in their convex hull

Conv(w0, ... ,wn) :=
{ n∑

i=0
θiwi

∣∣∣∣∣θi ≥ 0,
n∑
i=0

θi = 1

}
, (1)

is near-optimal. We continue constructing near-optimal portfolios until their convex hull suf-
�ciently covers the near-optimal portfolios represented by the shaded region in Figure 1. We
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Figure 1: E�cient frontier and near optimal region.
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Table 1: Statistics and optimal allocation.

Stocks Bonds T-Bills
Mean 1.323% 1.027% 0.729%
Stdev. 4.793% 3.984% 0.219%

Correlations:
Stocks 1.000
Bonds 0.341 1.000
T-Bills -0.081 0.050 1.000

Optimal alloc. 58.1% 22.8% 19.1%

Figure 1 shows amean-variance e�cient frontier based on the statistics in Table 1, an optimal allocation (orange
dot) and a shaded region with near-optimal portfolios. Table 1 shows statistics of monthly returns from January
1980 to December 1990 as reported by Chopra (1993) and portfolio weights of the orange dot in Figure 1.

will show that the region of near-optimal portfolios is more robust than the optimal portfo-
lio w0 itself. The intuitive understanding is that, with slightly di�erent input parameters, the
near-optimal region slightly changes in shape, but most near-optimal remain near-optimal.
For example, the old optimum becomes near-optimal and one of the near-optimal portfolios
becomes optimal. For the investor, his allocation becomes more robust, because no revision
is needed when it remains near-optimal with slightly di�erent input parameters.

3 Methodology

3.1 Constructing near-optimal portfolios

As discussed, the construction of near-optimal portfolios consists of the following steps:

1. start with an e�cient frontier and an optimal portfolio w0 on the frontier as in Figure 1;

2. specify the near-optimal region as indicated by the shaded region in Figure 1;

3. �nd the portfolio w1 in the near-optimal region that is furthest away from w0;

4. �nd the portfolio w2 in the near-optimal region that is furthest away from Conv(w0,w1);

5. continue until Conv(w0, ... ,wn) covers the near-optimal region up to a required precision
ε.

In this section, we specify these steps in more detail. Although near-optimal portfolios can be
found below any e�cient frontier, we assume for simplicity that the investor is interested in
near-optimal mean variance portfolios. Thus, the e�cient frontier is constructed by solving

min
w
λwTΣw− wTµ, (2a)

Aw = b, (2b)
Gw ≤ h, (2c)

where the vector µ contains the asset’s mean returns, Σ is their covariance matrix, A is a matrix
representing together with the vector b the equality constraints, G is a matrix representing
together with the vector h the inequality constraints and λ ≥ 0 represents the investor’s risk
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aversion. Also, equality constraints (2b) should at least enforce that all weights sum to one.
Apart from this restriction, constraints (2b) and (2c) be chosen freely and, for exampl,e be used
to prevent short-selling or �x the allocation to certain asset classes. In Step 1, the investor
solves mean variance optimization problem (2) for a number of risk aversion parameters λ
and obtains an e�cient frontier denoted in Figure 1 by the solid blue line. From the frontier,
the investor selects an optimal portfolio w0 with an appropriate risk-return trade-o�. In Step
2, the investor speci�es a region R of near-optimal portfolios that, compared to the optimal
portfolio w0, have an average return which is at most δµ lower, i.e.,

wTµ ≥ wT0µ− δµ, (3)

and have a variance which is at most δΣ higher, i.e.,

wTΣw ≤ wT0Σw0 + δΣ. (4)

The near-optimal region R(w0, δµ, δΣ) consists thus of all portfolios that satisfy (2b), (2c), (3)
and (4), and, it is represented by the shaded region in Figure 1. It can be shown that the near-
optimal region is convex whichmeans that any weighted average of the near-optimal portfolios
is near-optimal, see Appendix A.
Next, in Step 3, we �nd a portfolio w1 in the region R that is furthest away from w0, i.e, w1
satis�es:

w1 = argmax
w∈R(w0,δµ,δΣ)

‖w0 − w‖ , (5)

where ‖.‖ indicates the Euclidean norm, i.e., the root of the sum of the components. Note
whenmaximizing that the Euclidean norm favors large deviations in one component over small
deviation in several components. More generally, as follows from Lemma A.1, once we found
i near-optimal portfolios w0, ... ,wi−1, all portfolios in the convex hull Conv(w0, ... ,wi−1), i.e., all
weighted averages, are near-optimal. Therefore, in Step 4, we �nd wi by �nding the portfolio
furthest away from the convex hull of w0, ... ,wi−1:

wi = argmax
w∈R(w0,δµ,δΣ)

d
(
w, Conv(w0, ... ,wi−1)

)
, (6)

where the function d indicates the distance to the convex hull:

d
(
wi, Conv(w0, ... ,wi−1)

)
:= min
w∈Conv(w0,...,wi−1)

‖wi − w‖ . (7)

As indicated in Step 5, we continue constructing near-optimal portfolios until the constructed
convex hull Conv(w0, ... ,wn) covers the near-optimal region R(w0, δµ, δΣ) up to a required pre-
cision ε > 0, i.e., until

d
(
wn, Conv(w0, ... ,wn−1)

)
< ε. (8)

In particular, criterion (8) enforces there are no near-optimal portfolios outside of the convex
hull of w0, ... ,wn that have allocation weights that di�er more than ε with the nearest portfolio
in the convex hull. Therefore, in practice, we recommend choosing ε equal to the absolute
di�erence in allocation that is considered insigni�cant.

3.2 Support vector machines

Although Section 3.1 speci�es how to construct the region of near-optimal portfolios, espe-
cially optimization problem (6) is di�cult to solve since evaluation of its objective requires
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Figure 2: Graphical representation of a SVM-classi�cation problem. The blue line separates the green portfolios
from the orange portfolio and has maximal separation margin 2/‖x‖.
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solving optimization problem (7) to determine the distance of a portfolio to a convex hull. Op-
timization problem (6) can be simpli�ed by applying theory on support vector machine (SVM)
classi�cation developed over time since Vapnik (1963).
In its easiest form, SVM-classi�cation is a machine learning method that tries to separate two
classes of points in space by a plane (Boser, Guyon, and Vapnik 1992). Figure 2 shows a two-
dimensional example where the green points, representing portfolios w0 to wi−1, are separated
in space from the orange point, representing the portfolio wi, by the line wTx + z = 0; here x
is a vector and z is a scalar. In SVM-classi�cation, the separating line wTx + z = 0 maximizes
its distance to the two classes which, as indicated in Figure 2, can be shown to equal 1/‖x‖. As
shown in (Boser, Guyon, and Vapnik 1992), the separating line of a SVM-classi�cation problem
can, when it exists, be found by solving a quadratic programming problem:

min
x,z
‖x‖, (9a)

xTwj + z ≤ −1 for j = 0, ... , i− 1, (9b)
xTwi + z ≥ 1. (9c)

As shown in Bennett and Bredensteiner (2000), Bennett and Campbell (2000), and Mavro-
forakis and Theodoridis (2006), the separation margin 2/‖x‖ equals the distance between the
convex hull Conv(w0, ... ,wi−1) and the point wi as de�ned by (7). Optimization problem (6) can
therefore be written as:

min
x,z,wi
‖x‖, (10a)

xTwj + z ≤ −1 for j = 0, ... , i− 1, (10b)
xTwi + z ≥ 1, (10c)
Awi = b, (10d)
Gwi ≤ h, (10e)
wTi µ ≥ w

T
0µ− δµ, (10f)

wTΣw ≤ wT0Σw0 + δΣ, (10g)

where constraints (10d) to (10g) enforce thatwi is near-optimal, i.e.,wi is in the region R(w0, δµ, δΣ),
and constraints (10b) and (10c) together with objective (10a) enforce that wi is at maximum dis-
tance of the convex hull Conv(w0, ... ,wi−1).
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Figure 3: Mean-variance e�cient frontier with a near-
optimal region.
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Table 2: Near optimal portfolios and their centroid.

Allocation Mean Std. Dist.
Stocks Bonds T-Bills hull

w0 58.1% 22.8% 19.1% 1.14% 3.21%

w1 7.7% 85.0% 7.3% 1.03% 3.53% 0.57
w2 50.3% 0.0% 49.7% 1.03% 2.41% 0.28
w3 73.7% 0.0% 26.3% 1.17% 3.53% 0.17
w4 46.1% 52.7% 1.2% 1.16% 3.53% 0.12
w5 62.6% 27.6% 9.8% 1.18% 3.53% 0.03
w6 27.8% 71.4% 0.8% 1.11% 3.53% 0.03
w7 55.0% 40.6% 4.5% 1.18% 3.53% 0.01

c 46.2% 39.6% 14.2% 1.12% 3.12%

Figure 3 shows, as in Figure 1, the mean-variance e�cient frontier and optimal portfolio (orange dot) based on
the statistics in Table 1. In addition, the �gure shows a near-optimal region (shaded) covered by the near-optimal
portfolios (blue dots). The centroid (green dot) is the average of the blue dots. Table 2 lists the allocation weights
and statistics of the optimal portfolio w0, the near-optimal portfolios and centroid portfolio c. The last column
indicates the distance to the convex hull of the preceding near-optimal portfolios.

Although optimization problem (10) is non-linear and not even convex due to inequality con-
straint (10c), it is solvable with standard optimization software such as the SciPy’s SLSQP and
basin hopping solvers (Jones, Oliphant, Peterson, et al. 2001).

4 Example

4.1 Discussion

In this section, we continue with the Chopra (1993) example also shown in Figure 1. Under a
no short selling constraint, we perform a mean variance optimization using the statistics in
Table 1. This results in the e�cient frontier (blue line) and the optimal portfolio w0 (orange
dot) indicated in Figure 3. The near-optimal region, indicated by the shaded region in Figure 1,
consists of portfolios that, compared to the optimal portfolio (orange dot), have a return that
at most 10% lower and a standard deviation is at most 10% higher. To �nd the near-optimal
region, we apply the methodology in Section 3 and obtain portfolios w1 to w7. The convex hull
of the portfolios w0, ... ,w7 covers the near-optimal region up to a precision ε = 0.01 implying
that no near-optimal portfolios that with allocation di�erences larger than 1% exist outside of
the convex hull, see equation (8).
Chopra (1993) studies (almost) the same near-optimal region with the purpose to show that
near-optimal portfolios can have completely di�erent weights. There are two important di�er-
ences to note. First, for the purpose in Chopra (1993), a di�erent de�nition of the near-optimal
region is used: portfolios that, compared to the optimal portfolio, provide 90% of the average
return for less than 90% of the standard deviation are left out, i.e., the lower left corner of the
near-optimal region indicated in Figure 3 is left out. For our purpose, however, we do consider
these portfolios near-optimal because there are portfolios considered near-optimal with the
same average return and a higher standard deviation. Regardless of this di�erence in de�ni-
tion, we veri�ed that, as is implied by the di�erence, all near-optimal portfolios constructed
in Chopra (1993) are contained in the convex hull of w0, ... ,w7.
Second, Chopra (1993) constructs near-optimal portfolios through a grid search, i.e., try all
possible portfolios, and searches for near-optimal portfolios with the highest upward and
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downward deviation in one asset class. Because there are three assets, this results in six near-
optimal portfolios in addition to the optimal portfolio w0 that, as intended by Chopra (1993),
di�er completely in weights. It, however, can be veri�ed that the convex hull of the near-
optimal portfolios found in Chopra (1993) does not completely cover the near-optimal region.
For example, portfolios w4 and w5 are near-optimal in the de�nition of Chopra (1993), but
cannot be written, also not approximately, as a weighted average of the near-optimal portfolios
reported in Chopra (1993). This shows that constructing portfolios with the highest upward and
downward deviation is not suitable to �nd the complete near-optimal region. Additionally, a
grid search algorithm is, contrary to the methods presented here, only feasible in very low
dimensions.
Since optimization problem (10) is not convex, we performed two consistency checks to ensure
the convex hull of the near-optimal portfolios w0, ... ,w7 indeed covers the near-optimal region.
First, as noted, we veri�ed that all near-optimal portfolios constructed in Chopra (1993) are con-
tained the convex hull of by w0, ... ,w7. Second, we also veri�ed that all portfolios both on the
e�cient frontier and in the near-optimal region are contained in the convex hull of w0, ... ,w7.
Together, this gives su�cient con�dence in the convergence and accuracy of numerical solvers.
Note that Figure 3 might wrongly give the impression that the near-optimal portfolios of which
the convex hull covers the near-optimal region should lie on the boundary of the region in-
dicated by the shaded region in Figure 3. It can easily be shown that this is not the case. For
example, when the near-optimal region is increased to portfolios with a return of at least 1%
and a variance of at most 4%, the �rst near-optimal portfolio found has a 100% allocation to
treasury bills and does not lie on the boundary of the region indicated by the shaded region
in Figure 3.

4.2 Selecting a preferred near-optimal portfolio

Once the near-optimal region is covered by the convex hull of the near-optimal portfolios
w0, ... ,w7, the investor is free to select a preferred portfolio from this region. Without further
information, the centroid c of the near optimal portfolios w0 ...w7, indicated by the green dot
in Figure 1, can be a good default choice:

c = 1
8

7∑
i=0

wi. (11)

We will show that the centroid is robust in two ways. First, the centroid is less sensitive to
changing input parameters than portfolios on the frontier. Second, because thecentroid is not
on the boundary of the convex hull, it is expected to remain near-optimal with slightly di�erent
input parameters.
Although the centroid portfolio can be a good default choice, preferably, the investor brings
in additional arguments to select a preferred near-optimal portfolio. In light of the sensitivity
problem, these arguments should be additional to the risk-return statistics in Table 1, e.g.,
selecting the portfolio with the highest sharp ratio would not su�ce. As an example, suppose
the investor prefers, for whatever reason, not to invest in bonds. It follows from Table 2 that,
in that case, any weighted average of portfolio w2 and w3 would su�ce: such a portfolio is
near-optimal and has no allocation to bonds. When the investor currently owns 60% equity
and 40% cash which is to be invested in either stocks or treasury bills, he could, for example,
choose to leave his current exposure to equity intact and to buy treasury bills with his cash.
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Figure 4: Near-optimal region vs. mean variance.
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Figure 5: Near-optimal portfolios.
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Figure 4 and 5 show, as a function of the sample size N, average percentage of overlap between the original
and perturbed convex hull (yellow), the average turnover between the original and the perturbed mean variance
optimal portfolio (orange) and the average turnover between portfolios in the original convex hull and the closest
portfolio in the perturbed convex hull (blue). In addition, Figure 5 shows the original and the perturbed centroid
(green). And also, the average turnovers between the closest portfolio in the perturbed convex hull and: the original
convex hull (blue), the original mean variance optimal portfolio (orange dotted), and the original centroid portfolio
(green dotted).

4.3 Robustness of the preferred near-optimal portfolio

To investigate the robustness of the near-optimal portfolio method, we view the mean and
covariance matrix presented in Table 1, i.e., the optimization’s input parameters, as estimated
on a sample of size N. To perturb the optimization’s input, we draw a sample of size N from a
normal distribution with mean and covariance as in Table 1 and estimate a perturbed mean
and covariance matrix.1 So, the larger the sample size the closer the perturbed means and
covariance matrices are to original ones in Table 1. For each perturbed mean and covariance
matrix, we determined the perturbed optimal mean variance portfolio, near-optimal portfolios,
convex hull and centroid portfolio.
Figures 4 and 5 shows the average robustness using 100 samples for each sample size. In Figure
4, the yellow dots and their trend line show for each sample size the average percentage overlap
using 100 sample of size N between the original and perturbed convex hulls. The increase of
the yellow trend shows that, with perturbed input parameters, roughly 60% to 90% of the
near-optimal portfolios remains near-optimal and, consequently, no new investment advice is
required.
The comparison with mean variance optimization can best bemade with the turnover measure:

T(u, v) = 1/2
∑
i
|ui − vi| ,

where the sum is taken over all the components of the vectors. The turnover measure can
be interpreted as the fraction of the portfolio u that has to be sold and reinvested to obtain
portfolio v. In Figures 4 and 5, the orange dots and their trend line show that the average
turnover between the mean variance optimal and perturbed mean variance optimal portfolio
ranges from roughly 10% to 25%. The average turnover is signi�cantly decreased with the near-
optimal portfolio method: the blue dots and their trend line in Figures 4 and 5 indicate that on
average less than 5% of the portfolio has to be sold and reinvested to obtain a near-optimal
portfolio when input parameters are re-estimated.

1Equivalently, we could have drawn perturbed means and covariance matrices from a normal-inverse-Wishart
distribution which is the conjugate prior to the multivariate normal distribution.
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Figure 5 shows for two typical near-optimal portfolios, the mean variance optimal portfolio
and centroid portfolio, that their robustness signi�cantly increases when their robustness is
measured w.r.t. the near-optimal region. At least for these two near-optimal portfolios, the
near-optimal method achieves its increase in robustness, because it measures robustness
with respect to a region of near-optimal portfolios instead of with respect to a single optimal
portfolio. In other words, the increase in robustness is a free advantage when all near-optimal
portfolios are considered valid investment decisions.

5 Conclusion
We have shown how to construct a region of near-optimal portfolios below the e�cient frontier.
Also, we discussed how this methodology is both robust and is designed to support rather than
replace the investor’s investment decision process.
There are several directions that can be explored in future research. First, the methodology
can be applied to more computationally intensive optimization objectives such as mean-CVaR
optimization. Second, the robustness w.r.t. estimates for themean and covariancematrices can
be explored separately. Also, the robustness can be compared with other robust optimization
approaches such as resampling. And �nally, the method’s integration with the investment
decision process can be further explored.
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A Convexity of the near-optimal region

Lemma A.1. The near-optimal region R(w0, δµ, δΣ) consisting of all portfolios that satisfy (2b),
(2c), (3) and (4) is convex.

Proof. When given two near-optimal portfolios u, v ∈ R(w0, δµ, δΣ), we have to show that any
weighted average w = tu+(1− t)v is also near-optimal, i.e., w satis�es (2b), (2c), (3) and (4) for all
0 ≤ t ≤ 1. First, since u and v satisfy (2b), it directly follows that w satis�es (2b). Also, inequality
constraints (2c) and (3) follow directly. That w satis�es inequality constraints (4) follows from
convexity of the left hand side of (4) and applying Jensen’s inequality:

wΣw ≤ tuΣu + (1− t)vΣv ≤ t (w0Σw0 + δΣ) + (1− t) (w0Σw0 + δΣ) = w0Σw0 + δΣ.
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